BUILDING DEPARTMENT

Calculation for Combustion Air Requirements

1. What is the total combined input btu ratings of all appliances located in the boiler room or rooms?
a.) Total input $x 50=$ \qquad cubic, ft.
2. What is the volume of this room (length x width x height)?
3. Does the volume of the space equal more them 50 cubic feet for each $1,000 \mathrm{btu}(\mathrm{s})$ of combined appliance ratings? If it does, combustion air is not required. If it is less than 50 cubic feet for each $1,000 \mathrm{btu}(\mathrm{s})$ of combined rating combustion air is required.
4. How will compliance with combustion air be achieved? Check one below.
a. Interior air:

For interior air, what is the volume of the room air is being taken from?
b. Air directly from the exterior of the building through screened openings:
c. Air directly from the outside thru horizontal ducts:
5. What is the calculated size of each opening?
6. Where will each opening be located?

Copies of your calculations must be submitted to the Building Official.
I attest that I have done the above required calculations based on Chapter 20 of the 1995 CABO Mechanical Code/I 996 International Mechanical Code.

Signed \qquad Owner Name Printed \qquad
Name \qquad Location \qquad
Company \qquad
Phone \qquad

Building Department

Combustion Air Requirements [Example]

This form must be filled out for all of the following permits:

- All new homes.
- All finished basements.
- All boiler, furnace, and water heater replacements.

What is the total gross btu ratings for all fuel burning appliances?

Example:	2 Furnaces at $1.00,000 \mathrm{btu}$	$200,000 \mathrm{btu}(\mathrm{s})$
	1 water heater at $85,000 \mathrm{btu}$	$85,000 \mathrm{btu}(\mathrm{s})$
	$\underline{\text { Total: }}$	$\underline{285,000 \mathrm{btu}(\mathrm{s})}$

How many cubic feet are contained in the room that the appliances are located?

[Example: The room is 40' long by 28 ' wide by $7-\mathbf{6}^{\prime}$ high $=8,400$ 'cubic feet]

The code requires a room to be 50 cubic feet for each $1,000 \mathrm{btu}(\mathrm{s})$ of appliances. So in the above illustration, we have $285,000 \mathrm{btu}(\mathrm{s})$ so we would need 50×285 or 14,250 cubic feet. So for the above example, the room the boiler is in would be defined as a confined space so we would need to introduce combustion air.

Where we get the air for combustion from will determine what size openings are required.
If we are getting the air from an interior space we will need 1 square inch for each 1000 btu(s) to combined rating. For the above example, we will need each opening to be 285 square inches. One opening within 12 inches of the ceiling and one opening within 12 inches of the floor.

If we are getting air directly from the outside through louvers, v/e will need 1 square inch for each 4000 btu(s). This will require 72 square inches, one opening within 12 inches of ceiling air one opening within 12 inches of floor.

If we are getting air from me outside through horizontal ducts, we will require 1 square inch for each $2,000 \mathrm{btu}(\mathrm{s})$. So for the above example, we will require 2 openings, each opening to be 28: divided by $2=143$ square inches located as above.

Remember if an interior source is being used, the space we are getting the air from must meet total 50 cubic feet for each $1,000 \mathrm{btu}(\mathrm{s})$ rule also. The size of the boiler room can be combined with the size of the room that the air is being taken from to achieve this volume. Remember that all openings are net. The Building Official must approve all calculations.

